未来,电动 汽车 行业或将面临大变革,续航里程、座舱空间等方面都将有进一步被开发的可能。
面临可能发生的变化,这次车企站在了纯电动车的角度去思考创新的可能——“零跑的创新一定要基于电动车和燃油车的差异去创新。”在零跑CTC电池底盘一体化技术的发布会上,零跑 汽车 董事长朱江明如是说。
4月25日,零跑发布了智能电动CTC电池底盘一体化技术,而即将搭载CTC技术上市的零跑C01将成为全球首款无独立电池包的电动 汽车 。
车身轻量化是 汽车 行业亘古不变的话题,而单位体积下装更多电量,逐步提升续航里程是电动 汽车 亘古不变的话题。
两个目标重叠一起,需求就很明确了:动力电池一定要瘦身!
目前新能源 汽车 的瘦身计划有两个突围方向。一方面从材料路线,主要是通过研究不同的正极材料,例如多种磷酸铁锂电池、三元锂电池等,带来能量密度和续航的提升。另一方面则是从工程技术路线出发,从改良电池体积、电池包轻量化设计等方面实现续航的提升。
就当前阶段而言,固态电池、碳硅负极等新材料距离大规模应用落地还有一定距离。而现阶段围绕三元锂电池做材料创新,也似乎陷入了安全性、能量密度、经济性的不可能三角。
一条路受阻,就要在另一条路上做突破。近几年来,电池创新更多出现在结构的优化和迭代上。
这一方向最新的进展是CTC,电芯直接集成到底盘。
CTC技术出现之前,动力电池从“电芯-模组-电池包”的标准化模组结构过渡到普遍采用Cell to Pack的CTP(无模组电池)结构,使电模组零部件数量进一步减少,提升空间利用率,实现降本增效。
CTC直接将电芯安装在底盘之上,电池骨架结构和底盘车身结构合二为一。简而言之,就是车身、电池和底盘形成一个融为一体,大幅提升电池包的体积密度。
零跑是国内最早发布CTC方案的企业,根据零跑公布的数据显示,CTC技术使零跑C01整车垂直空间增加10mm,电池布置空间增加14.5%,同时搭配AI BMS大数据电池管理系统,能够让整车续航里程提升10%。
这正是CTC结构的优势:通过减少冗余结构和零部件数量的轻量化设计提高续航、降低成本,达到更高的结构效率。
凭借这些优势,CTC基本成为新能源领域的发展“共识”,除了零跑之外,特斯拉、宁德时代、比亚迪等也对CTC技术有相关布局。
2020年9月特斯拉在电池日发布了4680电芯、CTC技术和一体化压铸技术,并宣布其柏林工厂将采用CTC技术生产Model Y。
另一方面,动力电池供应商也在研发CTC技术。宁德时代计划在2025年实现集成化CTC技术,LG新能源也曾公开CTC相关技术专利。
但是很显然,CTC的技术落地的难度并不小。特斯拉的专利显示,采用 CTC 方案之后,电池包作为结构件的刚性、热失控管理等都有更高的要求。
也就是说,保障电池包的气密性、CTC后的底盘碰撞安全性、有效防止热蔓延都是需要设计和工程的创新来同步实现。
另外,维修问题也是车企必须跨过的门槛。传统电池包主要通过螺栓和车身连接,而CTC结构中如果电池内部出现损耗需要维修,就需要拆换车身,这是否会对车身结构造成影响还尚不可得知,这意味着维修过程中乘员舱可能会再次面临密闭性风险。
这些难点都是CTC技术迟迟难以在量产中实现的原因,直到今天才有零星的车企开始应用。那么,零跑和特斯拉面临这些难题表现如何?
从实现电池密封结构的路径看,特斯拉与零跑的CTC技术有很大差异。简单来说,前者的方案是 “ 无底板车身 + 密封电池 ” ,优先保证了电池本身的封闭性能;而后者的方案是 “ 完整车身 + 电池托盘 ” ,去掉了电池包的上盖,优先保证的是乘员舱的密闭性。
根据此前特斯拉公布的资料,特斯拉的方案是将电芯直接排列在底盘上,取消了座舱底板,座椅直接安装在电池包上盖。电池结构作为一个整体与车身集成,在电池的集成度上更为彻底,也满足了电池系统的封闭需求。
为了增强车辆底盘应对横向碰撞的刚性,特斯拉还在座椅的承载件和电池上盖之间加了一层横向布置的结构件。
另外,特斯拉电芯的侧面冷却方式以及胶粘剂填充结构也对导热起到一定阻隔的效果。
而从零跑发布的资料来看,零跑则是直接将电池模组放在底盘上,保留了完整的车身框架,用下车体框架来密封电池。
目前来看,零跑C01是利用车身纵梁、横梁形成完整的密封结构,让车身与电池结构互补,使电池抗冲击能力及车身扭转刚度得到提升。
CTC技术的安全性很大程度上需要考量工程组装结构。从这一点来看,特斯拉与零跑的结构组装技术是一致的。而如果从电池的密封性能来考量,特斯拉的封闭电池方案或许会让风险更可控。
零跑表示将会开放其CTC技术,我们也期待会看到更多的细节披露。
不过,在CTC成为技术风口之前,另一项技术也在同时甚至早于CTC技术发展——换电技术。
据悉,零跑的CTC技术可以兼容800V的高压平台、400kW的快充,并可以实现家用式充电。而由于电池结构也是车身底盘结构的一部分,电池的拆卸可能变得困难,换电技术也就很难应用于这一车型。一定程度来说,换电技术就站在了CTC技术的对立一方。
虽然换电技术与CTC技术在同一辆车上互不兼容,但这并不代表这两种技术在同一个市场内没有共存的空间,二者在市场中也不是后者替代前者的关系。恰恰相反,在生机勃勃的新能源市场,无论是换电还是 CTC 技术都有着巨大的发展潜力和价值。
换电模式最大的优势就是补能耗时极短,全程仅需数分钟。此外,换电车电分离的模式也使得这一技术在电池损耗管理、电池的可迭代性方面具有巨大优势。
不过,在正式形成全国统一的换电标准之前,换电模式实现互换还有很长的路要走。此外,除了蔚来,目前换电模式的对象主要是网约车、出租车等对充电时间极为敏感、电池消耗量大的运营性质车辆。
一位接近宁德时代的人士表示,“当电动车的渗透率上升时,应用场景也会增多,需求就会出现多元化,不会是一种技术路线包打天下的局面,作为龙头老大,必须要有多种技术和产品布局,来适应这种多元化的市场。”
CTC不仅是技术的革新,对行业也将带来很大影响。2021年11月,国务院发布的《新能源 汽车 产业发展规划(2021-2035年)提出研发新一代模块化高性能整车平台,攻关纯电动 汽车 底盘一体化设计、多能源动力系统集成技术。
在降成本、高续航、轻量化等优势的吸引下,未来越来越多的车企会愿意开始CTC技术的布局,在新能源乘用车方面或许会更为明显。因此,CTC电池技术无疑是未来新能源 汽车 行业的重要发展趋势。
技术的变更总得经过市场检验。CTC技术的实际表现如何,还需要在搭载这一技术的车型上市后才能印证。
不过,当技术尚处于概念阶段时,往往看起来比较遥远;但当技术开始落地的时候,进展往往会超出预期。零跑率先量产CTC技术,已经足以说明在新能源赛道上,中国品牌完全有机会“借道超车”。
在发布会上,零跑宣布:“零跑将对CTC技术免费开放共享。”这或将带动中国的新能源 汽车 一同向上、走得更远。
新能源汽车动力电池的维护与保养方法有哪些?
电动汽车只能通过改变电池性能,增加续航里程吗?电动汽车只能通过改变电池性能,增加续航 里程 ( 查成交价 | 车型详解 )吗? 笔者认为新能源汽车除了提升电池技术,确实还有其他办法。?首先最直接的方式就是提高充电效率,缩短充电时长,实际上燃油车很多车辆的续航里程也不是很高,但是加油速度快,到加油站加油只需要花费 3-5分钟即可继续再跑几百公里,如果纯电动新能源汽车能够以续电的方式间接的增加续航里程,假设能够做到充电5分钟续航增加300公里甚至更高,和加油时间差不多的话,那么实际上已经可以解决续航里程不足的问题了。?其次就是要持续推广建设充电桩和发展换电模式,如果快速充电桩的布局能和加油站一样分布广,充电功率能够达到较高峰值的话,那么也是能够从侧面解决纯电动车续航里程的问题。如果能用更高效便捷的换电模式来代替效率比较慢的充电模式,能让电动车在较短时间满电继续上路,那么换电站实际上和加油站也是一样的。此外,上述的办法之外,我们可以针对车辆进行轻量化设计,这样的话就可以减少车辆的能耗,从而提高车辆的续航里程表现。?笔者相信,未来的新能源汽车将会有越来越抢眼的续航里程表现。 续航里程是新能源汽车很重要的一项参数,尤其对纯电动车型而言,更是能直接决定着整车的竞争力,而新能源中的插电式混动和增程式车型,由于还带有一套燃油系统来保证续航,所以受纯电动续航里程的影响相对小一些,不过三者都有对应的纯电动续航里程,最直接的提高办法就是问题中所说的提升电池技术,那除此以外还有哪些方式?因为一辆新能源汽车出厂以后,其搭载的电池容量是固定的,要想使其续航里程有所增加,那就要减少不必要的电量损耗,从而有更多的电能来驱动就提升了对应的续航里程,目前采用比较普遍的是车身轻量化和降低风阻系数,车身轻量化是指车架结构采用更多重量轻,强度不低或者更高的新型合金材料,这就会减轻整车的自身重量,使电机和电池的负担相应就要小一些,从而在续航里程上有所提升,而减少空气阻力主要是车身上的设计,让空气经过车身的时候越流畅对应的阻力就越小,毕竟车速快了以后有相当一部分电话号是用来克服空气阻力的,比如时速80公里时空气阻力消耗的电能占比60%,因此降低风阻系数显然在同等电量的前提下就能使续航里程有所增加。车身轻量化和降低风阻系数在燃油车领域同样广泛应用,其目的主要就是为了节省燃油,其实这对于提高电动汽车的续航而言,更多的是起到优化作用,能提高的续航里程有限难以得到质的提升,所以新能源汽车的续航里程真正要有所突破还得依靠电池技术的发展。 以新能源电动汽车为例,它的续航能力主要取决于动力电池的存电量,储存电量越多,续航里程也就越多。在不改变电池技术的情况下,还可以通过车身轻量化设计、增加电池数量、增强空气动力学设计减少风阻、开发节能电机、增强能量回收系统的效率,这些方式都可以达到增强续航能力的效果。车身轻量化设计:车身轻量化设计 简单的概括就是减轻车重。车重减少汽车的能耗也会减少,运动惯性也会减少,其运动状态就更容易被改变,而且加速性能、制动性能以及操控性能均会有所提升。但这种减重并不是盲目的减少, 也是有严格标准的。汽车轻量化不能以牺牲安全性、舒适性和减少配置的方式来减重,因此量产车的轻量化只能通过材料、工艺、结构的优化升级来解决。不管是燃油汽车还是新能源汽车,对汽车轻量化的需求都是一样的,减轻重量,达到更好的能效这就是汽车轻量化的效果之一。增加电池数量:这种方式,也是当前很多车型在动力电池技术没有突破之前,为了提升续航能力使用最多的方式。通过堆积电池来提升续航能力,这样的方式虽然见效快,但性价比并不高。增加动力电池数量的直接后果就是造车成本大幅度上升。车身重量增大,能耗也会相应的增加。所以,这种方式并适合普及推广。增强空气动力学设计减少风阻:汽车的运动会受到空气的阻力,速度越快阻力越大,能耗就越高。通过优化设计车型外观,使得车辆在高速行驶的时候,空气阻力变小,就能达到节能的效果了。开发节能电机、加强能量回收系统的转化效率:电动汽车是由电机直接驱动的,电机的能耗越低,也就相当于是增加了车辆的续航能力了。电动汽车都带有能量回收系统,利用车辆减速时的制动动能来为动力电池充电。在比较理想的状态下,再生制动能量回收控制系统可以为电动汽车带来30%的续航能力补充。由此可见,这套系统转化效率的高低,对于增加电动汽车的续航能力来说,还是非常关键的。总结:动力电池技术并非是新能源汽车增加续航能力的唯一途径。对汽车的很多方面进行改进都能够达到一定的节能效果。 电池容量越大,续航里程就越长,这应该已经成为绝大多数消费者对于新能源汽车一个最直观的印象,所以如何提升电池技术,如能量密度等,就成为很多新能源主机厂和电池配套厂商重点研发和思考的问题。但这里我想说的是想要提升纯电动汽车的续航里程,最核心的一个性能参数就是百公里电耗,即在一定的测试工况下,行驶100公里需要消耗的电量。这个参数越优秀,代表在相同电池容量的情况下,就可以行驶更长的距离。当下,影响百公里电耗最核心几个影响因素则是:车身轻量化、三电效率和风阻系数(外观设计)。 车身轻量化:此处的车身轻量化设计,是有很大前提的:在不影响整车操控和安全性的前提下,做到车身质量最优。同时,这里必须强调的是,如果一味的靠堆电池来提升续航里程的话,也是有点得不偿失的,毕竟电池包本身也是有很大重量的。 三电效率:纯电动汽车能够往前行驶,直观理解就是动力电池的电能(化学能)转化为了动能,在能量的转化效率高低,直接会决定到底能够有多长的续航里程水平。尤其是电动机的驱动效率,是非常关键的性能参数指标。 风阻系数:特斯拉所有车型的水滴造型,可以使得其整车的风阻系数做到很低,据网上查询到的信息显示,特斯拉Model S的风阻系数为0.24Cd,前段时间吉利几何A在新加坡上市,号称风阻系数居然能够做到0.23Cd。简单理解,风阻系数越低,则在行驶过程中,所受到的阻力就越小。尤其是在高速驾驶的情况下,毕竟风阻是和速度的平方成正比的。之前所分析的是,在电池容量相同的情况下,百公里电耗越低,则续航里程就可以越长。还有一种结论则是,当两台车的百公里电耗相同的情况下,电池容量越大,则续航里程就可以越长。这也是为什么一台“油改电”的车型,和一台基于纯电平台打造的车型,如果轴距相同,则后者所能容纳的电池容量也往往会更大,毕竟底盘的空间可以设计的更加合理。 小结:优化车身底盘空间,提升电池储能技术,降低百公里电耗,就可以最大限度的提升纯电动汽车的续航里程。当然,驾驶习惯,外界环境温度等,也会影响续航里程。希望此文可以回答楼主问题 提高电动汽车续航里程的途径只有两种,增加动力电池的能量密度比或者车身轻量化,也就是说要么让一辆电动汽车里能携带更多的电能,要么降低车身重量,使得百公里能耗大幅下降。一、轻量化,以纯铝、铝合金、铝镁合金或者碳纤维材料替代车身上的钢、铁材料是车身轻量化的常用方法,但这样势必会大幅增加造车成本,使得本来就偏高的纯电动汽车售价再创新高。比较现实的轻量化是从动力电池自身做起,从前新能源汽车生产企业多采用钢材料制成的动力电池托盘,现在很多企业都在以铝合金材料为替代钢材料。铝合金的密度为2.7 g/cm?,无论在压缩还是焊接等方面,铝合金材质都已非常优秀。如果进而能以镁合金的密度为1.8 g/cm?,碳纤维是1.5 g/cm?,这些材料用来生产电池托盘,将可以极大地提高新能源整车的轻量化水平。二、动力电池提高能量密度是多年以来众多电池厂商、科研单位在潜心攻克的难题。目前比较公认的突破方向是固态电池的量产应用。传统锂离子电池中,需要使用隔膜和电解液,它们加起来占据了电池中近40%的体积和25%的质量。固态电解质取代(主要有有机与无机陶瓷材料两个体系)电解液,正负极之间的距离(传统上由隔膜电解液填充,现在由固态电解质填充)可以缩短到只有几到十几个微米,这样电池的体积和质量就能大大地降低,提升能量密度的同时,还实现了整车的轻量化。现在车用动力电池,为了追求能量密度,使得安全方面的隐患随之剧增,而固态电池的安全等级完全是质的提升。使用了全固态电解质后,锂离子电池的适用材料体系也会发生改变,其中核心的一点就是可以不必使用嵌锂的石墨负极,而是直接使用金属锂来做负极,这样可以明显减轻负极材料的用量,使得整个电池的能量密度有明显提高。这是目前最为理想的提高电动汽车续航里程的方案。 电动汽车的续航一直都是消费者比较担心的问题,对此,车企和动力电池厂商都做出了很大的努力,最明显的表现为增加电动汽车的电池容量和更换更高能量密度的动力电池。这是新能源车企普遍的做法。不过在其他方面,车企也做了很大的努力。降低整车风阻系数,现在很多新能源车型在上市之时,车企都会大力宣传其风阻系数,目前很多国产电动轿车的风阻系数基本都在0.23至0.24左右,纯电SUV的风阻系数在0.29至0.30左右,相比燃油车型要低了不少,而设计师为了降低风阻系数,也是花了不少心思。首先加上了密封式进气格栅,增加了科技感的同时,也有了更大的空间发挥设计想象力,采用隐藏式门把手,这是特斯拉首先在量产实现的一项设计,平缓的车身侧面也为电动汽车的降低风阻系数做出了不小的贡献,还有就是很多车企会给概念车型配上电子后视镜,但因为法规的问题,目前还不能实现量产,所以只能对后视镜的设计做出一定的优化,以保证最大限度地降低风阻系数。降低整车质量。在燃油车领域。轻量化设计一直都是车企努力的方向,在新能源汽车上也同样如此,很多车企为了降低整身的车身重量。都给电动汽车配上了铝合金或者碳纤维的车身。在保证车身刚度和强度的同时,还有效地提高了续航里程。譬如蔚来的ES8车型,采用了铝合金车架,就比普通的高强度钢车架的重量要降低了20%左右,对提高续航里程有很大的帮助作用,不过这对成本的要求很高,所以一般都应用在高端电动车上,而低端电动车为了降低车身重量,只能够减少车内一些常规的设计,比如说取消物理按键和把真皮座椅变成织物座椅,都可以比较有效的降低车身重量,提高续航里程。 当前,我国在售的新能源汽车主要包括电动汽车、插电式混合动力汽车和增程式电动汽车,其中电动汽车续驶里程一直深受消费者、车企和国家层面的高度关注。电动汽车续驶里程受诸多因素影响。为有效提升续驶里程,车企除了使用能量密度更高的动力电池外,往往采取以下措施,提升续驶里程。1.增加电池数量。在影响电动汽车续驶里程的诸多因素中,电池容量的大小是最关键的因素。电池容量就是电池能释放出的电量。由于动力电池包是由许多电池单体串联而成的,因而提升电池容量最简单直接的方法,就是增加电池数量。在电池能量密度不变的情况下,电池数量增多,电池容量自然就增加了;电池容量提升,续驶里程自然就长了。不过,电池数量的增加是有一定限度的,电池数量过多,会使车身重量增加,续驶里程增加的效果将不是那么明显,而且还会加大车辆磨损,并造成电池资源浪费。2.减轻整备质量。整备质量就是空车重量。车辆在行驶时,需要克服来自车轮的滚动摩擦力。整备质量越轻,车轮所受的滚动摩擦力就越小,电机就不会把更多的输出功率用于克服滚动阻力上,从而有效延长续驶里程。因此,车企在造车的时候,非常重视整备质量的减轻,使用高能量密度电池、使用新型材料等,都是有效的减重方法。3.使用专属平台。近年来,各新能源车企纷纷开始正向研发以动力电池为核心的电动汽车专属平台。专属平台不仅能以增加电动汽车携带动力电池空间的方式增加电池容量,而且能以高集成化的方式降低整备质量,进而延长电动汽车续驶里程。像比亚迪的“e平台”,通过将驱动电机、电控和减速器三合一,比传统分立部件减小了30%的体积、25%的重量、33%的成本,同时提升了20%的功率密度、17%的扭矩密度、1%的NEDC效率指标。4.降低风阻系数。和滚动阻力会严重影响电动汽车续驶里程一样,风阻系数对续驶里程也会产生很大的影响。风阻系数越高,车辆行驶时的耗电量就越高,续驶里程就越短。因此,车企以减少迎风面积,改善车身流线型等方式降低风阻系数,使电动汽车获得更长的续驶里程。5.降低电机功率。电机功率基本上是和耗电量成正比的,相对来说,小功率电机的耗电量要比大功率电机小得多。一些微型电动汽车之所以能以30kWh的电池容量获得300公里的续驶里程,使用小功率电机,以降低最高车速、加速性能等增加续驶里程。另外,选择大小合适、花纹适当、胎压较高的轮胎,使用铝合金轮毂,以及提高传动效率等,也能提高续驶里程。再者,由于整备质量对续驶里程的影响较大,部分车企会采取减配和降低安全性的方式来降低整备质量,比如使用塑料的防撞梁等,消费者在选购时一定要注意鉴别。至于插电式混合动力汽车和增程式电动汽车,除了上述方法以外,它们增加续驶里程最好的方法,就是增加油箱容积。 随着新能源汽车行业的不断发展,保有量也在逐步的增长。以2019年9月份为例,我国的新能源汽车产销分别完成了8.9万辆和8万辆。而在充电桩保有量上,截止到2019年9月份,公共运营充电桩和私人充电桩之和也达到了约111.5万台。但是对于新能源汽车,尤其是纯电动汽车而言,里程焦虑仍然存在,除了提升电池技术之外,还有哪些增加续航里程的新方式呢?想要增加续航里程,除了提升电池技术之外,还可以从充电速度上下功夫。大家都知道,目前的纯电动汽车充电速度较慢,与传统燃油车加油相比有着明显的差距。虽然有快速充电桩存在,但是使用快速充电桩要想充满电量,一般也需要约三个小时左右,而使用普通充电桩充电时间则长达8~10个小时。所以充电速度如果能够得到有效的缩减,那么消费者的用车便捷性当将会得到大幅度的提升。另外,延长续航里程也可以通过降低整车的耗电量来实现。降低新能源汽车,尤其是纯电动汽车的耗电量,就像是降低传统燃油车的油耗一样,除了可以降低用车成本之外,也可以延长续航里程。降低整车的耗电量可以通过车辆空间结构的优化和降低整车的质量等方式进行着手。最后,也可以提高动能回收系统的效率。现在很多新能源汽车都配备了动能回收系统,所谓动能回收系统就是利用车辆刹车过程中的机械能转化为电能,为电池组进行充电,从而延长续航里程。而通过优化都能回收系统,提高转化效率,自然而然的就可以增加续航里程了。 @2019
新能源车地盘托底会不会损伤电池?
一、定期检查
首先,检查电池组,清洁电池组盖和柱的水平,以避免灰尘和其他碎片。如果在检查过程中发现其被碎片或污染物覆盖,应使用压缩空气方法来提高表面的清洁度。确保电池组外壳的完整性,避免变形、开裂等问题。同时,托盘和电池盖的密封性也要加强。只有加强电池与车身的连接,才能加强电池的稳定性。
其次要检测电池的连接状态,极连接要安全稳定,避免腐蚀等问题。此外,还要保证单体电池的连接点与电池组的导温带等部件稳定接触,避免出现变形、松动等问题。充电时,插座与插头的接触必须安全,不能脱落。
最后,应该检测漏洞。一般来说,为了保证电流的稳定性,锂电子电池组的电压会稳定在300伏,所以电池必须满足绝缘要求。同时,坚持日常维护,因为如果频繁更换和充电电池,其使用时间会缩短,故障率会增加。因此,动力电池应该由专业的维修机构进行维修。坚持日常维护和测试,制定管理计划,根据电池的实际应用进行升级和维修。主要内容是检测电压、电池盒连接器等。,并及时记录检测和维修情况,避免频繁维修和更换,从而降低维修成本。
二、避免紧急加速
新能源汽车开始载人时,如果使用动力电池进行紧急加速,由于大量放电,动力电池会出现硫酸铅结晶等问题,影响动力电池的物理性能。另外,如果车速突然下降,驾驶员首先要考虑动力电池故障的问题,因此必须培养正确的驾驶习惯,避免紧急加速。
三、保护充电器
为了提高动力电池的维护效果,我们必须更加重视充电。需要保证充电器的安全性,因为一般市场上的充电器都缺乏很高的抗震性,所以在维修过程中会出现很多问题。如果充电器中的电位器在强烈震动下移位,会影响充电效果。因此,如果你想保护动力电池,你必须保护充电器。
四、降低制造成本
我国新能源动力电池的研发相对较晚,因此企业的核心技术主要来自发达国家,尤其是关键零部件的生产。根据我国的实际发展分析,我国在零部件自主研发领域取得了一定的成绩。虽然与发达国家相比仍有发展空间,但需要注意零部件的质量和功能。但是我们有价格优势,所以在增加购买规模的过程中,也要保证动力电池的功能,延长使用时间,降低后续的维护和维修成本,激发人们的购买热情,增加公司的经济利润。
新能源汽车是以电能为驱动能源的,车上背负着巨大的动力电池。从构造上看,动力电池内部可分为正极材料、负极材料、电解液和电池隔膜。在这几种材料中,除了正极材料以外,其它三种材料都是会燃烧的,而且电解液的燃点非常低;而电池隔膜主要起着隔离电池正负极,避免电池短路的作用。
新能源汽车是以电能为驱动能源的,车上背负着巨大的动力电池。从构造上看,动力电池内部可分为正极材料、负极材料、电解液和电池隔膜。在这几种材料中,除了正极材料以外,其它三种材料都是会燃烧的,而且电解液的燃点非常低;而电池隔膜主要起着隔离电池正负极,避免电池短路的作用。
动力电池是非常害怕强力撞击的。虽然电池电芯外面裹着一层钢壳或铝壳,而且动力电池组外面还有一层全封闭的外壳,但在巨大的撞击下,动力电池组的外壳会因受到巨大的挤压,而出现变形甚至撕裂,进而挤压到电池电芯外壳,甚至使外壳破裂,致使可燃的电解液泄漏,电池隔膜撕裂,造成电池短路。短路会在瞬间释放出大量的热量,使电池迅速升温,直至抵达燃点,从而引发燃烧事故。
新能源汽车动力电池安放的部位主要以底盘为主,一些油改电车型则主要安放在后备箱位置。对于动力电池在底盘的新能源汽车而言,托底对动力电池造成损伤的可能性非常大。为尽可能地延长续驶里程,有些车企以减少离地间隙的方式来获得更大的电池容量。这样,这些新能源汽车在行驶时就更容易托底了。