新能源技术发展
“三电”技术基本成熟,续航里程和电池组能量逐步提升。三电系统,多采用磷酸铁锂电池和三元电池。电机技术的关键在定子转子,承担了与新能源汽车运动相关的功能,电控系统的性能直接决定了电动汽车的爬坡、加速、等主要性能指标。
核心:电池、电机、电控,难点:电池能量密度和充电速度难突破。核心:储氢罐、电机、燃料电池和高电压电池,难点:安全问题、加氢站普及、制造成本、技术要求。兼顾经济效益和降油耗的过渡性方案。
在平稳路段体验起过国内NGP、NOP等但时中国路况造应力不足,FSD升线中采用空间向量岛瞅图获取更多数据,提高判断精准度。Doio超级计算机在无监督调练后将自动完成可视化数据的筛选,清洗,林注,以低成本实现算法性能的相数级极高。FSDbeta版a使用SLAM建图,依靠视觉传感器实现感知能,提升识别能力,可视化范围大幅提升,模型从2D升级为4D,自动化程度更高。
新能源汽车的电池包技术
从探索改进电极及电池结构的设计方法、建立电池极化模型和仿真技术等方面入手,汽车动力电池的“瘦身健体”之旅仍在不断推进:
汽车动力电池的储能将有可能提高至400瓦时/公斤。
要让电池变成“肌肉型男”,在获得合理的正负极材料之余,还需要设计出可行的加工工艺。
着力全新的锂硫电池和锂空气电池的研究,它们的能量密度有望达到500瓦时/公斤。
被欧阳明高点名的科研项目获得了国家重点研发计划的支持,全名为“高比能动力电池的关键技术和相关基础科学问题研究”,该研究基于研究团队研制出的高容量富锂锰基的正极材料,汽车动力电池的储能将有可能提高至400瓦时/公斤。
近年来,在国家政策的大力扶持下,我国新能源汽车得到迅速普及,但“不敢去远郊区县”的“梗”至今难以理顺。打破500公里的单次行程极限将大大推动电动汽车的推广,然而汽车承载有限,如何在受限的体积内尽量多地储备电能成为科研攻关的关键目标。
该项目负责人、北京大学教授夏定国表示:“要进一步提高锂离子电池的能量密度, 正极材料的比容量是关键。”据夏定国介绍,针对正极材料的比容量,研究团队在前期工作基础上,深刻理解富锂材料稳定性机制以及阴离子氧化还原的产生机理,通过调控阴离子氧化还原机制来实现富锂材料性能的优化。
也就是说,团队首先遇到的问题是:阴离子氧化还原能力受什么“左右”?揭示这一规律将引导团队接近并找到性能优良的电极。团队还发现,在物质内部原子之间的几何结构会影响电子的结构,从而影响阴离子氧化还原的能力,研究明确了结构和效能的关系,并希望通过结构的设计改善电极材料的电化学性能。
“提高正极材料中的含锂量,让更多的阴离子稳定参与氧化还原反应是一个重要途径。”夏定国说,研制出高容量富锂正极材料,为进一步提高动力电池的能量密度提供了可能。项目组除制备出了一种高容量的富锂正极材料和两种高容量、高稳定富锂材料—碳复合材料外,还制备出了高容量的锂电池负极材料。
要让电池变成“肌肉型男”,在获得合理的正负极材料之余,还需要设计出可行的加工工艺。例如,富锂化合物在电极中需要很好地分散开来,既保持在体系中60%以上的含量,又不凝结为块状。分散越均匀,可逆性越好,充放电效率越好。
目前该电池还需进一步完善,夏定国介绍,仍存在“枝晶锂”制约新体系电池的进步及电池安全性这两个关键问题。相关实验显示,10—50次循环使用之后,电压衰减明显,电极也不起作用了。
“枝晶锂”是锂离子电池采用液态电解质所特有的,锂离子还原结晶成树枝样,并不断生长,到一定程度可能会刺破隔膜,科学家目前正在从两个角度寻求突破。一是包被涂层,二是研究固体电解质。
夏定国强调,“高能量密度锂离子动力电池的发展有待于电极材料、电解液及高安全性途径的发展,更有待于新的分析方法及电池制备技术进步”。
除了提高锂离子电池的能量密度使其达到400瓦时/公斤外,项目组还将着力全新的锂硫电池和锂空气电池的研究,它们的能量密度有望达到500瓦时/公斤。中国工程院院士陈立泉表示,锂空气电池是动力电池的发展方向之一,“现在大力发展的氢氧燃料电池,必须用金属罐子保障氢气使用时的安全,而锂空气电池(负极为空气中的氧气)只要一个榨菜袋子就可以了。从实用性、成本上来讲锂空气电池也应该发展”。
新能源电池现状及发展
新能源汽车的电池包技术
大多数消费者在购买电动汽车时,考虑最多的因素就是续航里程和价格。对这两个因素影响最大的部件就是动力电池。因此,电池企业为了在相同体积内放入更多的电量,正在紧锣密鼓地开发“高能量密度”电芯。 业界从电芯的四大组成材料入手致力于提高电芯的能量密度和安全性,同时控制成本。
业界就开发电芯这一方向已达成一定共识,而近年来对电池模块和电池包的关心正日渐提高。电池模块是指为在高温和振动等外部冲击中保护电芯,将多个电芯联结在一起并放入一个框架中形成的物理结构。聚集多个模块,再加上用来管理电池温度或电压等的电池管理系统(BMS)和冷却设备等,就组成了电池包。电池包是装入电动汽车的最终形态,所以电池包规格与电动汽车的整体设计存在密切关系。
当前锂离子动力电池是圆柱、方形、软包三类电池包三分天下。电池包结构优化的重要思路,是降低电池包冗余零部件使用量。圆柱电池和方形电池的金属外壳(钢壳或者铝壳),本身所具备的机械强度,可减少模组支撑结构件的使用量,也有助于降低电池包加工难度,软包电池需要借助模组来形成机械强度的设计就显出一定劣势。
方形电池的单体电芯容量较圆柱电池优势明显,且其方形物理形态较圆柱形物理形态能够使得电池包组装效率更高。近两年在电池包技术方面的主要技术创新是比亚迪的刀片电池和宁德时代的CTP (Cellto Pack,无模组技术),二者都用在方形电池上,未来方形电池的市场占有率或进一步提高。
新能源汽车的关键技术是什么
动力电池的类型
在新能源汽车中,主要的车用燃料分为常规、非常规两种类型,并且运用新型的车载动力装置来做动力来源。在新型能源的开发中,很多新能源逐渐被开发使用,像氢燃料、锂离子电池、固态电池等。目前,电动汽车已经逐渐被投入市场,进行了更大规模化的生产,改变了传统汽车领域,更加满足人们对汽车的多样化需求。
现阶段,新能源汽车已经受到人们的迫切关注,在新能源汽车的核心技术中,动力电池是关键性的技术,并且得到人们越来越多的关注。
动力电池的特征及展望
日本是第一个研究与开发新能源汽车的国家。在此之后,美国的新能源汽车研发制造厂对日本进行相关的经验借鉴后,推出了锂电池纯电动汽车。此类新型汽车的推出,引起了各个国家的关注,期待能够因新能源动力汽车的研制,改善因柴油汽车带来的严重污染。我国随后也进行了新能源汽车相关的研发和制造。在我国相关政策的大力支持下,新能源汽车有了势头较猛的发展,也在汽车领域中占据了较大的市场。
新能源汽车动力电池的
发展趋势
在生产动力电池的过程中,生产制造成本是所有相关企业都非常关注且重视的重要问题之一。在电池制造中,电池的成本优化分为两类,一是运用先进技术的有效提升,电池的升级更新,能够在新能源电动汽车中让电池在使用过程中提高使用期限,降低生产和使用过程中的故障率,从而降低电池制造的成本。二是改变电池生产的体系,相关部门进行规模化的电池生产,以此来降低成本。
新能源汽车的关键技术:电机、电池、电控系统。
1、电机
如果有稍微了解新能源汽车的朋友应该对电机是比较熟悉的,其实它可以相当于我们燃油车上的发动机,它是我们汽车前进的动力来源。
并且它除了为我们汽车提供前进的动力以外,还可以像发电机一般为我们的汽车将车辆前行的动能转化为电能逆向的储存会电池组中,也就是新能源车最常见的“动能回收”。
2、电池
电池同样很好理解,其实它的作用就相当于传统燃油车的油箱,同样是为汽车储存能量的装置,但是新能源车的电池组相比传统燃油车的油箱在重量上已经超过许多。
并且电池组没有传统油箱那么好“照顾”,新能源汽车的电池组一直都是被人广为诟病的地方,它需要保持有效率的工作同时也需要保证好自身的使用寿命,所以这就要看每家车企对电池组的技术手段了。
3、电控系统
电控系统有人会将其当做传统燃油车上的ECU,其实这种说法是不完全正确的。在新能源汽车上电控系统起到一个“管家”的作用,它结合了传统燃油车ECU上绝大部分的功能。几乎整个车辆的电子控制系统都是由电控系统来管理,所以在新能源汽车上电控系统起着一个十分重要的作用。
目前国内新能源汽车的势头可谓是相当的猛,同时国内的消费者也开始慢慢的接受新能源汽车的出现。但是抛开新能源车的优点不说,像电机、电池、电控系统的三大技术才应该是各家车企应该时刻思考的问题。只要保证了这三大技术的稳定可靠,那新能源汽车其实超越传统燃油车的时间将会越来越短。